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FLIGHT MEASUREMENT OF WALL-PRESSURE FLUCTUATIONS AND
BOUNDARY-LAYER TURBULENCE

By Harold R. Mull and Joseph S. Algranti

SUMMARY

The results are presented for a flight test program using a fighter
type Jet aircraft flying at pressure altitudes of 10,000, 20,000, and
30,000 feet at Mach numbers from 0.3 to 0.8. Specially designed appara-
tus was used to measure and record the output of microphones and hot-wire
anemometers mounted on the forward-fuselage section and wing of the air-
plane. Mean-velocity profiles in the boundary layers were obtained from
total-pressure measurenents.

The ratio of the root-mean-square fluctuating wall vpressure to the
free-stream dynamic pressure 1s presented as a function of Reynolds num-
ber and Mach number. The longitudinal component of the turbulent-velocity
fluctuations was measured, and the turbulence-intensity profiles are
presented for the wing and forward-fuselage section.

In general, the results are in agreement with wind-tunnel measure-
ments whichrgave been reported in the literature. For example, the vari-
ation of «/ﬁf/q (A/;f is the root mean square of the wall-pressure
fluctuation, and ¢ 1is the free-stream dynamic pressure) with Reynolds
number was found to be essentially constant for the forward-fuselage-
section boundary layer, while variations at the wing station were proba-
bly unduly affected by the microphone diameter (5/8 in.), which was
large compared with the boundary-layer thickness.

INTRODUCTION

The problem of aircraft noise has two facets: one from the view-
point of the passengers within the airplane, and the other from the view-
point of the people on the ground in the neighborhood of the airport
where planes are arriving and departing. As aircraft speeds increase
and as Jet-powered planes come into use, more of the inside noise
originates from the air flowing along the fuselage and less from
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the powerplant and vibration. In the speed range of the modern jet
transport (high subsonic) boundary-leyer noise may be the dominant source
of annoyance to crew and passengers. Boundary-layer noise has been the
subject of several theoretical studies on the transmission of sound
through the skin of aircraft and the resulting reverberent buildup in .
the interior (refs. 1 to 5).

Application of the results of these analyses has been hampered by
inadequate data on the magnitude and spectra of the fluctuating pressures
on the outside of the skin due to the presence of the turbulent boundary
layer. Flight information is very limited (see ref. 6), and wind-tunnel
investigations have not covered a wide range of conditions. Experimental
studies have been done on boundary-layer noise in a small pipe with a
flexible wall (refs. 7 and 8), in a wind tunnel (ref. 9), and in boundary
layers formed as water flows along a model (ref. 10).

In order to supply more Iinformation the flight tests described in
this report were undertaken. Wall-pressure fluctuations, turbulent-
velocity fluctuations, and mean-velocity profiles were measured in flight
as part of the aerodynamic noise program of the NASA Lewis Research
Center.

INSTRUMENTATION

The boundary-layer measurements described in this report were taken
at a station on the forward-fuselage section of an F-94 jet fighter air-
craft and on the wing. These locations were selected because they per-
mitted installation of the measuring probes and controls in the airplane
structure. The wall-pressure fluctuations were measured with a microphone
mounted flush with the airplane skin at two locations: on the forward-
fuselage section 5.5 feet from the stagnation point at the nose, and on
the wing 2.8 feet from the leading edge at 42 percent of chord. A flight
model hot-wire anemometer was used to measure the longitudinal-turbulent-
velocity fluctuations through the boundary layer, while the mean-velocity
profiles in the boundary layer were measured with a total-pressure probe
or a total-pressure rake. FPhotographs of the measuring stations with the
various probes mounted in place are shown in figures 1 and 2. A Dblock
diagram of the instrumentation is given in figure 3.

Two methods were used to install the two microphones for these
experiments., For the forward-fuselage section the microphone was machined
from a single piece of metal so that the diaphragm was the top surface of
the capsule. In this way the shape could be made to approximate the shape
of the skin on the forward-fuselage section of the plane, and thus no
unusual irregularities occurred at the face of the microphone. The sur-
face of the skin was made smooth by filling in all screw slots and other
indentations with appropriate fillers and removing all projections. The
microphone had a diameter of 5/8 inch, and its frequency response was £3
decibels from 50 to 25,000 cycles per second.
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For the wing location a sintered bronze material was machined and
cut to fit the location chosen on the wing. The condenser-type micro-
phone was mounted inside the wing just below this sintered plug (5/8 in.
diam.). Extensive tests show that the basic frequency response of the
microphone (+3 db from 10 to 15,000 cps) was not seriously deteriorated
by the presence of the sintered material. A standard power supply was
used for the microphones.

The mean-velocity profiles in the boundary layer were measured by
means of total-pressure probes. In the case of the nose installation a
rake was fabricated which consisted of nine tubes 1/32 inch in diameter
arranged to give an adeguate representation of the boundary layer developed
on the nose of the plane. The pressures monitored by the rake were
switched successively by three-way solenoid valves to a single differen-
tial pressure gage. The electrical output of the pressure transducer was
recorded by a self-balancing-potentiometer chart recorder. These signals
together with the calibrations could be used to obtain the velocity pro-
file within the boundary layer.

For the thinner boundary layer at the wing station a single total-
pressure probe was driven from the surface of the wing well into the
free~stream flow over the wing. This probe was actuated by a screw-type
actuator which also drove the hot-wire probe. The electrical signals
from the pressure transducer controlled the frequency of a telemeter
subcarrier oscillator. These signals were then recorded on magnetic tape.

The electrical signals from the hot-wire probe were controlled and
compensated for frequency response by a specially built flight model of
a self-exciting alternating-current constant-temperature hot-wire ane-
mometer {(ref. 11, fig. 3, and fig. 4 of this report). This anemometer
had a cutoff frequency response of approximately 7000 cycles per second
and used a 0.0005-inch-diameter (1/2-mil) tungsten wire. The electrical
signals from the hot-wire anemometer were recorded on a flight type mag-
netic tape recorder (fig. 5). This recorder, which could accept seven
simultaneous signal channels, was also used to record the probe position
and the microphone signals. One channel was used for voice recording of
the flight conditions and certain other data such as the root mean square
of the hot-wire voltage and the average value of the a-c carrier which
heated the wire. These two voltages were indicated by meters mounted in
the cockpit, and the voice recordings of their magnitude were used to
calibrate the hot-wire voltage signals recorded on the tape. The micro-
phones were calibrated in the usual way by means of a standard acoustic
source driven by a transistor oscillator which gave sine wave calibrations
at 400 and/or 1000 cycles per second.



EXPERIMENTAL PROCEDURE
Data Acquisition

Flight data were taken at pressure altitudes of 10,000, 20,000, and
30,000 feet and over a range of Mach numbers of 0.3 to 0.8. Prior to
each data flight the pressure transducers were calibrated. Several sig-
nals of known frequency and voltage level were recorded on magnetic tape.
These signals provided a means for checking the response of the playback
and record mechanism as well for setting playback levels. Zero levels
were also checked and recorded so that any frequency shift of the telem-
eter subcarrier oscillator could be detected.

The micrcphone was calibrated prior to each flight by means of the
calibrator mentioned in the section INSTRUMENTATION. The hot-wire in-~
strumentation was calibrated at frequent intervals, and the hot-wire
probe itself was calibrated before each flight,

The flight plan for taking the data was to climb to the desired
altitude and stabilize the aircraft at the desired speed. At this time
a recording was made of the wall-pressure fluctuations, the boundary-
layer velocity fluctuations at a given hot-wire probe position, and the
total-pressure measurements. The flight test conditions were voice-
recorded. Then a new condition was established, and the recordings were
repeated. '

Data Reduction

The recordings of the data were used to obtain the following: the
mean-velocity profiles in the boundary layer, the turbulence-intensity
profiles, the spectra of turbulence, the wall-pressure fluctuations, and
their spectra.

The mean-velocity profiles were calculated from measurements of air-
craft total temperature, probe total pressure, and skin static pressure.
The turbulence intensity was computed using the methods of reference 12,
and the spectra of the turbulence in the boundary layer were obtained by
the methods of reference 13,

RESULTS AND DISCUSSION

The results of the wall-pressure nmeasurements are plotted in figures
6 and 7. In these plots the ratio of the root-mean-square fluctuating
wall pressure to the free-stream dynamic pressure is plotted against
Reynolds number and Mach number. Because of the difficulties involved in
calibration, the effect of altitude on microphone sensitivity was not
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evaluated. An estimeted reduction of 2 decibels in the readings at
30,000 feet and of 1 decibel at 20,000 feet was used in compiling the
data for the two figures (see ref. 14).

The magnitudes of the ratio of root-mean-sguare pressures to dynamic

pressure (N/;ﬁ/q) on the forward-fuselage section at the lower Reynolds
numbers were close to those predicted for a flat plate in reference 1
(0.006) and were approximately the value observed in reference 8 in a
l-inch pipe.

The values of A/gg/q as measured are influenced by the size of the
microrhone as compared with the boundary-layer thickness. From the
microphone diameter (d = 5/8 in. ) and the 1/7 power law shown in figure
8 (a value of &%/5 = 1/8) a value of 4d/8 = 6.25 is calculated.

An
extrapolation of figure 5 of reference 8 (see fig. 9) indicated ﬁz/q
values of 4X10'5, which compares quite well with the measured value.
(Symbols are defined in the appendix. )

The magnitude of q/;§/q was much less on the wing than on the
forward-fuselage section. This difference in magnitude was also noted
with the turbulence intensities, which are discussed later. The two points
(taken on the wing at 30,000 ft) that lie well above the others in fig-
ure & were at local Mach numbers of 0.86 and 0.9. The turbulence inten-
sities also show a sharp rise in this region, indicating possible onset
of local shock patterns. This was observed at the high speeds at the
20, 000-foot altitude with the signal being too erratic to measure.

The reasons for the lower fluctuating pressures at the wing station
are not understood at this time. For the wing station d/s* turns out
to be about 15 to 20. Such a large extrapolation of the data of refer-
ence 8 (fig. 9) is hardly justified, but it does indicate that the low

values of A/;f/q are at least partly caused by microphone size as com-
pared with boundary-layer thickness. Other contributing factors are the
lower turbulence intensity and smaller boundary-lsyer thickness as com-
pared with the forward-fuselage section, as is discussed later. The run
Irom the stagnation point on the nose was 5.5 feet, and it was found that
static-pressure recovery was nearly complete. In contrast, the location
of the station on the wing was near the minimum-static-pressure point
(2.8 ft from the leading edge or 42 percent of the chord). The boundary-
layer turbulence was thus growing along a favorable pressure gradient.

Figure 7 illustrates the variation of A/;E/q with Mach number for
the forward-fuselage-section and wing stations. As shown by the curve
the total variation at the forward-fuselage station was only a little
more than +1 decibel for all altitudes and Mach numbers. But at the
wing the result is different. The curves show that the altitude is an
important parameter and that the total variation with Mach number is
nearly an order of magnitude (i.e., 20 db).



The boundary-layer-velocity profiles showed the effect of this dif-
ference in history. The profiles taken at the forward-fuselage station
have a typical 1/7 power law shape (fig. 8), while that of the wing was
more nearly 1/5 or 1/6 (fig. 10). In figure 11 the boundary-layer pro-
files for constant Mach number at the wing station illustrate the effect
of altitude on the boundary layer. As might be expected, there is only
a slight effect.

Since instrumentation used in this experiment measured only the
longitudinal-velocity fluctuations, the discussion of turbulent velocity
fluctuations is necessarily limited to that extent. Figures 12 and 13
show the turbulent-velocity profiles in the boundary layer at the three
pressure altitudes at the nose and wing stations, respectively. At the
nose station (fig. 12) a typical increase in turbulence intensity occurs
as the distance from the wall is decreased until & reversal occurs at
distances of about 0.05 inch from the wall. The scatter in the data is
rather large, but considering the difficulty involved in obtaining data,
it shows a trend of increased intensity with decreasing Mach number.
This variation is to be expected.

For the wing station (fig. 13) the results are similar except that
the boundary layer was much thinner at the wing station than on the nose
of the plane. In figure lS(a) the data for a 10, 000-foot pressure alti-
tude and a local Mach number of O.758 show the effect of buffeting or
possibly of local shocks.

The spectral analysis of the wall-pressure fluctuations and the
boundary-layer longitudinal-velocity fluctuations is given in figures 14
to 16. In figure 14, the spectrum levels referred to the overall level
for the nose station and the three pressure altitudes of 10,000, 20,000,
and 30,000 feet are given for two Mach numbers. There is little differ-
ence in the three curves except for more scatter in the low-frequency
pands at the highest altitude. The spectra are very flat with only the
slight indication of a peak in the neighborhood of 800 to 200 cycles per
second. The Mach number likewise has little effect on the wall-pressure
fluctuations at the nose station. For the wing station the spectra for

a 10,000-foot pressure altitude and Mach numbers 0.3 and 0.6 are presented.

At a2 Mach number of 0.3 the spectrum is flat with a resonant peak at 5000
cycles per second, while at a Mach number of 0.6 the variation and scatter
may be the result of buffeting at this speed and altitude.

Figure 15 shows the spectral analysis of the wall-pressure fluctua-
tions at a pressure altitude of 10,000 feet at the forward-fuselage and
wing stations while the airplane speed was varied through a series of
Mach numbers. The curves for both stations show considerable scatter at
the highest subsonic Mach number (0.65 for the forward-fuselage section
and 0.55 for the wing), and the spectrum level begins to fall off after
250 cycles per second. For the other Mach numbers there is evidence that

TT6-d
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the spectrum level is somewhat greater for the larger Mach numbers, a
flat distribution being the major characteristic of the noise. There is
only a slight tendency to peak at about 200 to 300 cycles per second for
this range of Mach numbers.

The spectral distribution of the longitudinal-velocity fluctuations
at four positions within the boundary layer is given in figure 18. The
curves show & slight tendency to peak at approximately 400 cycles per
second with an indication of more energy in the velocity fluctuations as
the distance from the surface is increased. There is insufficient evi-
dence to show the reversal in turbulence intensity that is shown in
figure 12.

CONCLUDING REMARKS

Measurements of wall-pressure fluctuations and boundary-layer tur-
bulence taken in flight tests of a fighter type jet aircraft have shown:

1. The wall-pressure fluctuations measured on the forward-fuselage
section of the aircraft agree well with an extrapolation of boundary-
layer data obtained in the laboratory when the relative size of the
micropaone as compared with the boundary-layer thickness is the same.
Similar extrapolations indicate that a possible explanation for the low

measured values of A/gg/q for the wing station (where p2 i1s the root

mean sguare of the wall-pressure fluctuations, and q is free-stream
dynamic pressure) is the large size of the microphone compared with the
thickness of the boundary layer.

2. Mean-velocity profiles on the forward-fuselage section conform to
a 1/7 power law, but those on the wing are perhaps of a 1/5 power law.

3. Turbulent-velocity profiles measured at the forward-fuselage and
wing stations are typical of flat-plate boundary layers.

4. The spectral distributions of the wall-pressure and turbulent-
velocity fluctuations in the boundary layer are quite flat with only a
slight tendency to peak.

lewis Research Center
Naticnal Aeronautics and Space Administration
Cleveland, Chio, July 11, 1960
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APPENDIX - SYMBOLS

microphone diameter

measured root-mean-square wall pressure

free-stream dynamic pressure

Reynolds number, pUyx/u

free-stream velocity

local free-stream velocity

fluctuating component of free-stream velocity in x-direction
root mean square of fluctuating velocity, 1/35

distance along surface from tip of nose of fuselage or from lead-
ing edge of wing

distance from ailrplane surface

boundary-layer thickness

[T e-8)e

coefficient of viscosity of air

air density at free-stream conditions
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Pressure ratio, -,/pz;q
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Figure 6. - Wall-pressure fluctuations as function of Reynolds number.
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Pressure ratio, -\/pz;q
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fuselage section.
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Spectrum level referred to overall spectrum level, db
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Figure 15, - Wall-pressure spectrum as function of Mach number. Pressure altiltude,

10,000 feet .
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(a) Furward-fuselage section; pressure altitude, 10,000 feet.
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(b) Wing; pressure altitude, 10,000 feet.
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Figure 16. - Boundary-layer iongltudinal-velocity fluctuatlioms.
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